Online Optimization for Power Networks

Changhong Zhao

Lingwen Gan

Steven Low

EE, CMS, Caltech

Enrique Mallada

ME, Johns Hopkins

Large network of DERs

Real-time optimization at scale

Online optimization (feedback control)

- Network solves hard problems in real time for free
- Exploit it for our optimization/control
- Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control

Optimal power flow

- DistFlow model and ACOPF
- Online algorithm
- Analysis and simulations

Load-side frequency control

- Dynamic model & design approach
- Distributed online algorithm
- Analysis and simulations
- Details

Main references (frequency control):

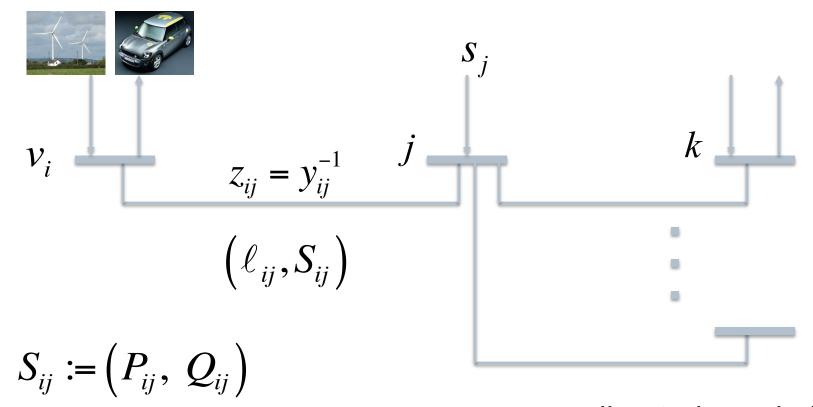
Zhao, Topcu, Li, L, TAC 2014 Mallada, Zhao, L, Allerton 2014 Zhao et al: CDC 2014, CISS 2015, PSCC 2016

Bus injection model

Power flow equations

$$S_{j} = \sum_{k:i=k} y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right) + y_{jj} \left| V_{j} \right|^{2} \qquad \text{for all } j$$

$$s_j = \operatorname{tr}\left(Y_j^H V V^H\right)$$
 for all j $Y_j = Y^H e_j e_j^T$



 $S_i := (p_i, q_i)$ directed graph G

$$v_i := |V_i|^2$$
, $\ell_{ij} := |I_{ij}|^2$

$$\begin{cases} \sum_{k:\, j \to k} P_{jk} &=& P_{ij} - r_{ij}\ell_{ij} + p_j, \quad j \in N^+ \\ \sum_{k:\, j \to k} Q_{jk} &=& Q_{ij} - x_{ij}\ell_{ij} + q_j, \quad j \in N^+ \\ v_i - v_j &=& 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) - |z_{ij}|^2\ell_{ij}, \ i \to j \end{cases}$$
 quadratic
$$v_i\ell_{ij} &=& P_{ij}^2 + Q_{ij}^2, \quad i \to j$$

$$x := (p,q,v,P, Q, \ell)$$
$$= (s,v,S, \ell)$$

DistFlow equations (radial nk) Baran & Wu, 1989

Bus injection model

$$S_{j} = \sum_{k: j \sim k} y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right)$$

Branch flow model

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - Z_{ij} \ell_{ij} \right) + S_j$$

$$v_i - v_j = 2 \operatorname{Re}(z_{ij}^H S_{ij}) - |z_{ij}|^2 \ell_{ij}$$

$$v_i \ell_{ij} = \left| S_{ij} \right|^2$$

$$(V,s) \in \mathbb{C}^{2(n+1)}$$

$$x := (s, v, S, \ell) \in \mathbf{R}^{3(m+n+1)}$$

DistFlow equations (radial nk) Baran & Wu, 1989

Bus injection model

$$S_{j} = \sum_{k: j \sim k} y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right)$$

Branch flow model

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} (S_{ij} - Z_{ij} \ell_{ij}) + S_j$$

$$v_i - v_j = 2 \operatorname{Re}\left(z_{ij}^H S_{ij}\right) - \left|z_{ij}\right|^2 \ell_{ij}$$

$$v_i \ell_{ij} = \left| S_{ij} \right|^2$$

$$(V,s) \in \mathbb{C}^{2(n+1)}$$

+ cycle condition on

$$x := (s, v, S, \ell) \in \mathbf{R}^{3(m+n+1)}$$

Cycle condition

A relaxed solution x satisfies the cycle condition if

$$\exists \theta \quad \text{s.t.} \quad B\theta = \beta(x) \mod 2\pi$$
 incidence matrix;
$$x \coloneqq (S, \ell, v, s)$$
 depends on topology
$$\beta_{jk}(x) \coloneqq \angle \left(v_j - z_{jk}^H S_{jk}\right)$$

Bus injection model

$$S_{j} = \sum_{k: i \sim k} y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right)$$

Branch flow model

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} (S_{ij} - Z_{ij} \ell_{ij}) + S_j$$

$$v_i - v_j = 2 \operatorname{Re}(z_{ij}^H S_{ij}) - |z_{ij}|^2 \ell_{ij}$$

$$v_i \ell_{ij} = \left| S_{ij} \right|^2$$

$(V,s) \in \mathbb{C}^{2(n+1)}$

+ cycle condition on

$$x := (s, v, S, \ell) \in \mathbf{R}^{3(m+n+1)}$$

Theorem: BIM = BFM

[Farivar & Low 2013 TPS Bose et al 2012 Allerton]

- BFM and BIM are equivalent (nonlinear bijection)
- ... but some results are easier to formulate or prove in one than the other
- BFM is much more numerically stable
- BFM is useful for radial networks
 - Extremely efficient computation (BFS)
 - Much better linearization
 - Compact extension to multiphase unbalanced nk

Bus injection model

$$S_{j} = \sum_{k: j \sim k} y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right)$$

Branch flow model

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - Z_{ij} \ell_{ij} \right) + S_j$$

$$v_i - v_j = 2 \operatorname{Re}\left(z_{ij}^H S_{ij}\right) - \left|z_{ij}\right|^2 \ell_{ij}$$

$$v_i \ell_{ij} = \left| S_{ij} \right|^2$$

$(V,s) \in \mathbb{C}^{2(n+1)}$

+ cycle condition on

$$x := (s, v, S, \ell) \in \mathbf{R}^{3(m+n+1)}$$

SOCP relaxation

Bus injection model

$$S_{j} = \sum_{k: j \sim k} y_{jk}^{H} \left(\left| V_{j} \right|^{2} - V_{j} V_{k}^{H} \right)$$

Branch flow model

$$\sum_{j \to k} S_{jk} = \sum_{i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + S_j$$

$$v_i - v_j = 2 \operatorname{Re} \left(z_{ij}^H S_{ij} \right) - \left| z_{ij} \right|^2 \ell_{ij}$$

$$v_i \ell_{ij} \ge \left| S_{ij} \right|^2$$

$$(V,s) \in \mathbb{C}^{2(n+1)}$$

$$x := (s, v, S, \ell) \in \mathbf{R}^{3(m+n+1)}$$

SOCP relaxation of OPF

OPF:
$$\min_{x \in \mathbf{X}} f(x)$$

SOCP:
$$\min_{x \in \mathbf{X}^+} f(x)$$

Sufficient conds for exact relaxation

type	condition	model	reference	remark
A	power injections	BIM, BFM	[25], [26], [27], [28], [29]	
			[30], [16], [17]	
В	voltage magnitudes	BFM	[31], [32], [33], [34]	allows general injection region
С	voltage angles	BIM	[35], [36]	makes use of branch power flows

TABLE I: Sufficient conditions for radial (tree) networks.

Tutorial: Convex relaxation of OPF, IEEE Trans. Control of Network Systems, 2014

Sufficient conds for exact relaxation

Ī	type	condition	model	reference	remark	
	A	power injections	BIM, BFM	[25], [26], [27], [28], [29]		
				[30], [16], [17]		
	В	voltage magnitudes	BFM	[31], [32], [33], [34]	allows general injection region	
Ī	С	voltage angles	BIM	[35], [36]	makes use of branch power flows	

TABLE I: Sufficient conditions for radial (tree) networks.

network	condition	reference	remark	
with phase shifters	type A, B, C	[17, Part II], [37]	equivalent to radial networks	
direct current	ent type A [17, Part I], [19		assumes nonnegative voltages	
	type B	[39], [40]	assumes nonnegative voltages	

TABLE II: Sufficient conditions for mesh networks

For mesh networks, see recent works of Andy Sun, Pascal van Hentenryck on relaxation of cycle condition

Tutorial: Convex relaxation of OPF, IEEE Trans. Control of Network Systems, 2014

SOCP relaxation of OPF

OPF:
$$\min_{x \in \mathbf{X}} f(x)$$

SOCP:
$$\min_{x \in \mathbf{X}^+} f(x)$$

But all these algorithms are offline unsuitable for real-time optimization of network of distributed energy resources

OPF

$$\min \quad \sum_{i=0}^n a_i p_i^2 + b_i p_i$$
 over $x:=(p_i,q_i,i\in N)$ controllable devices
$$y:=(p_0,q_0,v_i,i\in N;P_{ij},Q_{ij},\ell_{ij},(i,j)\in E)$$
 s.t. uncontrollable state

OPF

$$\begin{aligned} & \min \quad \sum_{i=0}^{n} a_i p_i^2 + b_i p_i \\ & \text{over} \quad x := (p_i, q_i, i \in N) \quad & \text{controllable devices} \\ & y := (p_0, q_0, v_i, i \in N; P_{ij}, Q_{ij}, \ell_{ij}, (i, j) \in E) \\ & \text{s.t.} \quad F(x, y) = 0 \quad & \text{BFM (DistFlow, radial network)} \\ & \underline{v}_i \leq v_i \leq \overline{v}_i, \quad & i \in N \\ & x \in X \ := \left\{ \underline{x} \leq x \leq \overline{x} \right\} \end{aligned}$$

Assume:
$$\frac{\partial F}{\partial v} \neq 0 \implies y(x) \text{ over } X$$

Eliminate y from OPF

min
$$a_0 p_0^2(x) + b_0 p_0(x) + \sum_{i=1}^n (a_i p_i^2 + b_i p_i)$$

over $x \in X := \{\underline{x} \le x \le \overline{x}\}$
s.t. $\underline{v}_i \le v_i(x) \le \overline{v}_i$, $i \in N$

Online (real-time) perspective

DER : gradient update x(t+1) = G(x(t), y(t))

$$x(t+1) = G(x(t), y(t))$$

control x(t)

measurement, communication y(t)

Network: power flow solver y(t) : F(x(t), y(t)) = 0

$$y(t): F(x(t), y(t)) = 0$$

Approximate OPF

$$\min \ a_0 p_0^2(x) + b_0 p_0(x) + \sum_{i=1}^{\infty} (a_i p_i^2 + b_i p_i)$$
over $x \in V := \{x \in V \in \overline{V}\}$

over
$$x \in X := \{\underline{x} \le x \le \overline{x}\}$$

s.t.
$$\underline{v}_i \leq v_i(x) \leq \overline{v}_i, \quad i \in N$$

add log barrier function to objective

min
$$L(x, y(x); \mu)$$

over $x \in X := \{\underline{x} \le x \le \overline{x}\}$

L: nonconvex

Recap

- Reduce to x only
- Add barrier function on v(x)

Online gradient algorithm

min
$$L(x, y(x); \mu)$$

over $x \in X := \{\underline{x} \le x \le \overline{x}\}$

gradient projection algorithm:

$$x(t+1) = \left[x(t) - \eta \frac{\partial L}{\partial x}(t) \right]_{X}$$
 active control
$$y(t) = y(x(t))$$
 law of physics

- Explicitly exploits network to carry out part of algorithm
- Naturally tracks changing network conditions

Online gradient algorithm

min
$$L(x, y(x); \mu)$$

over $x \in X := \{\underline{x} \le x \le \overline{x}\}$

gradient projection algorithm:

$$x(t+1) = \left[x(t) - \eta \frac{\partial L}{\partial x}(t) \right]_{X}$$
 active control
$$y(t) = y(x(t))$$
 law of physics

Results

- 1. Local optimality
- 2. Global optimality
- 3. Suboptimality bound

Local optimality

- \blacksquare x(t) converges to set of local optima
- \blacksquare if #local optima is finite, x(t) converges

Global optimality

Assume: $p_0(x)$ convex over X $v_k(x)$ concave over X

$$A := \left\{ x \in X : v(x) \le a_k \overline{v} + b_k \underline{v} \right\}$$

Theorem

If all local optima are in A then

- \blacksquare x(t) converges to the set of global optima
- \blacksquare x(t) itself converges a global optimum

Global optimality

Assume: $p_0(x)$ convex over X $v_k(x)$ concave over X

$$A := \left\{ x \in X : v(x) \le a_k \overline{v} + b_k \underline{v} \right\}$$

Theorem

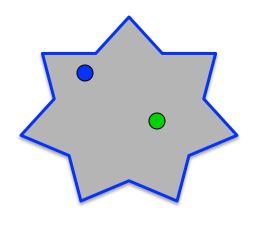
- can choose (a_k, b_k) s.t. $A \rightarrow$ original feasible set
- If SOCP is exact over X, then assumption holds

Suboptimality gap

local optimum

any original feasible pt slightly away from boundary

$$L(x^*) - L(\hat{x}) \leq \rho \approx 0$$



Informally, a local minimum is almost as good as any strictly interior feasible point

Simulations

# bus	CVX		IPM		error	spaadup
# bus	obj	time(s)	obj	time(s)	61101	speedup
42	10.4585	6.5267	10.4585	0.2679	-0.0e-7	24.36
56	34.8989	7.1077	34.8989	0.3924	+0.2e-7	18.11
111	0.0751	11.3793	0.0751	0.8529	+5.4e-6	13.34
190	0.1394	20.2745	0.1394	1.9968	+3.3e-6	10.15
290	0.2817	23.8817	0.2817	4.3564	+1.1e-7	5.48
390	0.4292	29.8620	0.4292	2.9405	+5.4e-7	10.16
490	0.5526	36.3591	0.5526	3.0072	+2.9e-7	12.09
590	0.7035	43.6932	0.7035	4.4655	+2.4e-7	9.78
690	0.8546	51.9830	0.8546	3.2247	+0.7e-7	16.12
790	0.9975	62.3654	0.9975	2.6228	+0.7e-7	23.78
890	1.1685	67.7256	1.1685	2.0507	+0.8e-7	33.03
990	1.3930	74.8522	1.3930	2.7747	+1.0e-7	26.98
1091	1.5869	83.2236	1.5869	1.0869	+1.2e-7	76.57
1190	1.8123	92.4484	1.8123	1.2121	+1.4e-7	76.27
1290	2.0134	101.0380	2.0134	1.3525	+1.6e-7	74.70
1390	2.2007	111.0839	2.2007	1.4883	+1.7e-7	74.64
1490	2.4523	122.1819	2.4523	1.6372	+1.9e-7	74.83
1590	2.6477	157.8238	2.6477	1.8021	+2.0e-7	87.58
1690	2.8441	147.6862	2.8441	1.9166	+2.1e-7	77.06
1790	3.0495	152.6081	3.0495	2.0603	+2.1e-7	74.07
1890	3.8555	160.4689	3.8555	2.1963	+1.9e-7	73.06
1990	4.1424	171.8137	4.1424	2.3586	+1.9e-7	72.84

Optimal power flow

- DistFlow model and ACOPF
- Online algorithm
- Analysis and simulations

Load-side frequency control

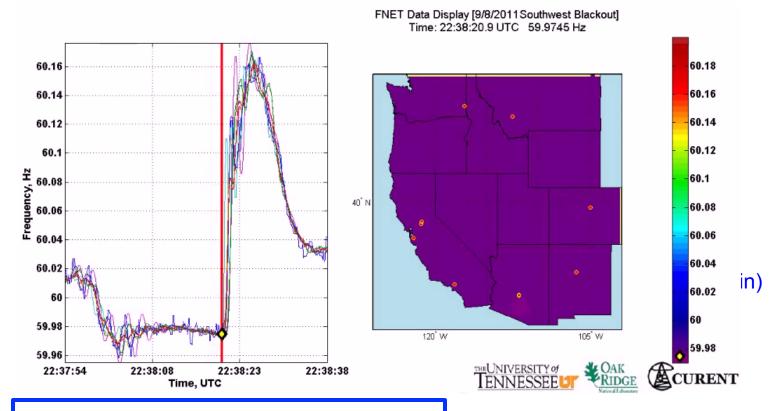
- Dynamic model & design approach
- Distributed online algorithm
- Analysis and simulations
- Details

Main references (frequency control):

Zhao, Topcu, Li, L, TAC 2014 Mallada, Zhao, L, Allerton 2014 Zhao et al: CDC 2014, CISS 2015, PSCC 2016

Motivation

- All buses synchronized to same nominal frequency (US: 60 Hz; Europe/China: 50 Hz)
- Supply-demand imbalance → frequency fluctuation

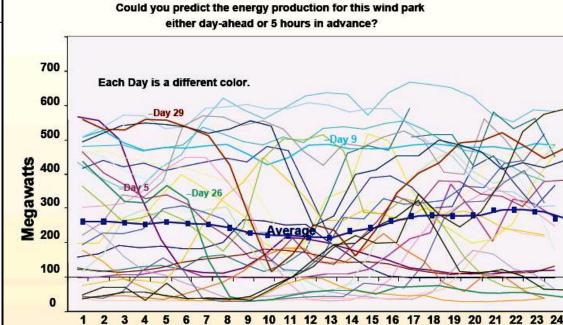


2011 Southwest blackout



Imagine when we have 50%+ renewable generation ...

Tehachapi Wind Generation in April - 2005



Why load-side participation

Ubiquitous continuous load-side control can supplement generator-side control

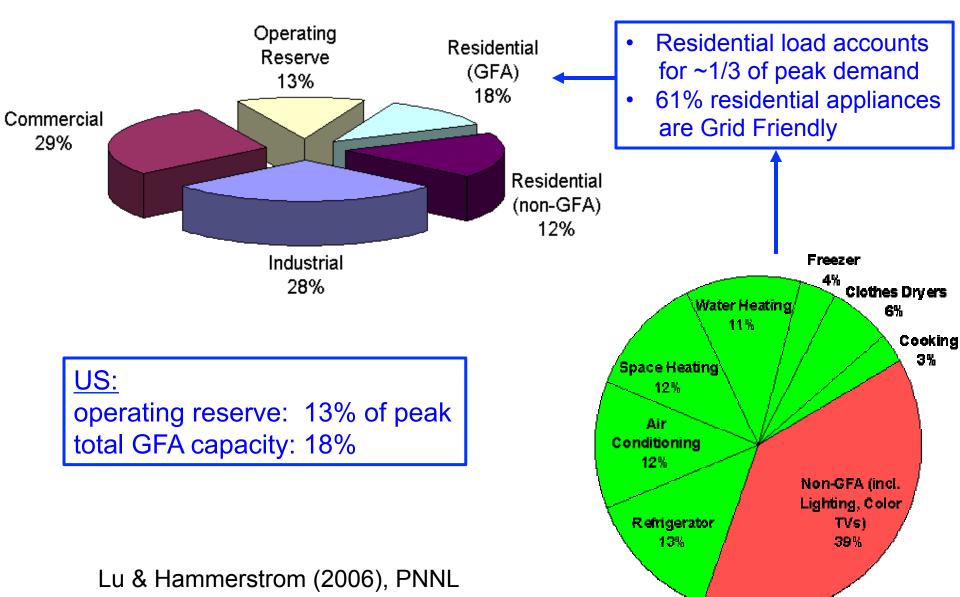
- faster (no/low inertia)
- no extra waste or emission
- more reliable (large #)
- better localize disturbances
- reducing generator-side control capacity

secondary freq control

primary freq control

sec min 5 min 60 min

What is the potential



How to design load-side frequency control?

How does it interact with generator-side control?

Literature: load-side control

Original idea & early analytical work

Schweppe et al 1980; Bergin, Hill, Qu, Dorsey, Wang, Varaiya ...

Small scale trials around the world

D.Hammerstrom et al 2007, UK Market Transform Programme 2008

Early simulation studies

Trudnowski et al 2006, Lu and Hammerstrom 2006, Short et al 2007, Donnelly et al 2010, Brooks et al 2010, Callaway and I. A. Hiskens, 2011, Molina-Garcia et al 2011

Analytical work – load-side control

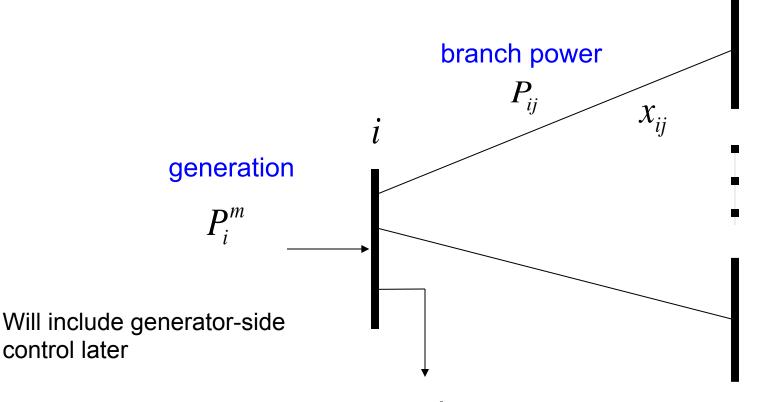
- Zhao et al (2012/2014), Mallada and Low (2014), Mallada et al (2014), Zhao and Low (2014), Zhao et al (2015)
- Simpson-Porco et al 2013, You and Chen 2014, Zhang and Papachristodoulou (2014), Ma et al (2014), Zhao, et al (2014),

Recent analysis – generator-side/microgrid control:

Andreasson et al (2013), Zhang and Papachristodoulou (2013), Li et al (2014), Burger et al (2014), You and Chen (2014), Simpson-Porco et al (2013), Hill et al (2014), Dorfler et al (2014)

control later

Network model



$$d_i + \hat{d}_i$$

loads: controllable + freq-sensitive

i : region/control area/balancing authority

Network model

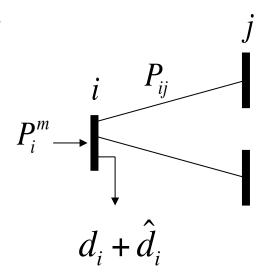
$$M_i \dot{\omega}_i = P_i^m - d_i - \hat{d}_i - \sum_e C_{ie} P_e$$

Generator bus: $M_i > 0$

Load bus: $M_i = 0$

Damping/uncontr loads: $\hat{d}_i = D_i \omega_i$

Controllable loads: d



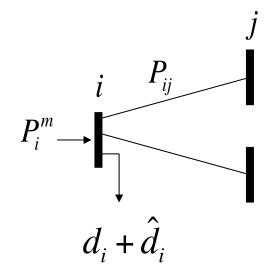
Network model

$$M_i \dot{\omega}_i = P_i^m - d_i - \hat{d}_i - \sum_e C_{ie} P_e$$

$$\dot{P}_{ij} = b_{ij} \left(\omega_i - \omega_j \right)$$

$$\forall i \rightarrow j$$

- swing dynamics
- all variables are deviations from nominal
- extends to nonlinear power flow



Frequency control

$$M_i \dot{\omega}_i = P_i^m - d_i - \hat{d}_i - \sum_e C_{ie} P_e$$

$$\dot{P}_{ij} = b_{ij} \left(\omega_i - \omega_j \right)$$

$$\forall i \rightarrow j$$

Suppose the system is in steady state

$$\dot{\omega}_i = 0$$
 $\dot{P}_{ij} = 0$ $\omega_i = 0$

Then: disturbance in gen/load ...

Frequency control

$$M_{i}\dot{\omega}_{i} = P_{i}^{m} - d_{i} - \sum_{e} C_{ie}P_{e}$$

$$\dot{P}_{ij} = b_{ij} \left(\omega_{i} - \omega_{j}\right) \qquad \forall i \rightarrow j$$
current load-side approach control

Network model

Distributed online algorithm

Simulations

Details

Main references (frequency control):

Zhao, Topcu, Li, L, TAC 2014 Mallada, Zhao, L, Allerton 2014

Zhao et al: CDC 2014, CISS 2015, PSCC 2016

$$M_{i}\dot{\omega}_{i} = P_{i}^{m} - \hat{d}_{j} - \hat{d}_{i} - \sum_{e} C_{ie} P_{e}$$

$$\dot{P}_{ij} = b_{ij} (\omega_{i} - \omega_{j}) \qquad \forall i \rightarrow j$$

Control goals

- Zhao, Topcu, Li, Low TAC 2014
- Rebalance power & stabilize frequency
- Mallada, Zhao, Low Allerton, 2014
- Restore nominal frequency
- Restore scheduled inter-area flows
- Respect line limits

$$M_{i}\dot{\omega}_{i} = P_{i}^{m} - \hat{d}_{i} - \sum_{e} C_{ie} P_{e}$$

$$\dot{P}_{ij} = b_{ij} (\omega_{i} - \omega_{j}) \qquad \forall i \rightarrow j$$

Control goals (while min disutility)

- Zhao, Topcu, Li, Low TAC 2014
- Rebalance power & stabilize frequency
- Mallada, Zhao, Low Allerton, 2014
- Restore nominal frequency
- Restore scheduled inter-area flows
- Respect line limits

Design control law whose equilibrium solves:

$$\min_{d,P} \qquad \sum_{i} c_i(d_i)$$

s. t.
$$P_i^m - d_i = \sum_e C_{ie} P_e$$
 node i

$$\sum_{i \in N_k} \sum_{e} C_{ie} P_e = \hat{P}_k \qquad \text{area } k \qquad \text{inter-area flows}$$

$$\underline{P}_e \le P_e \le \overline{P}_e$$
 line e

load disutility

Control goals (while min disutility)

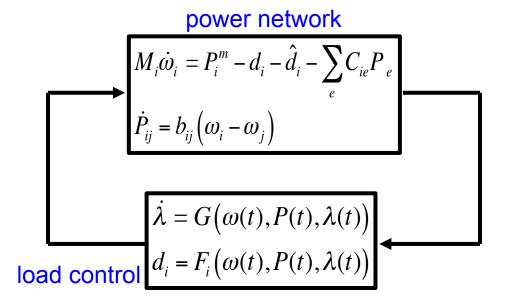
Rebalance power & stabilize frequency

freq will emerge as Lagrange multiplier for power imbalance

- Restore nominal frequency
- Restore scheduled inter-area flows
- Respect line limits

Design control (G, F) s.t. closed-loop system

- is stable
- has equilibrium that is optimal



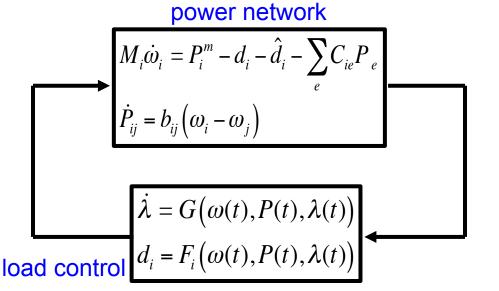
$$\min_{d,P} \quad \sum_{i} c_{i}(d_{i})$$
s. t.
$$P_{i}^{m} - d_{i} = \sum_{e} C_{ie} P_{e} \quad \text{node } i$$

$$\sum_{i \in N_{k}} \sum_{e} C_{ie} P_{e} = \hat{P}_{k} \quad \text{area } k$$

$$\underline{P}_{e} \leq P_{e} \leq \overline{P}_{e} \quad \text{line } e$$

Idea: exploit system dynamic as part of primal-dual algorithm for modified opt

- Distributed algorithm
- Stability analysis
- Control goals in equilibrium

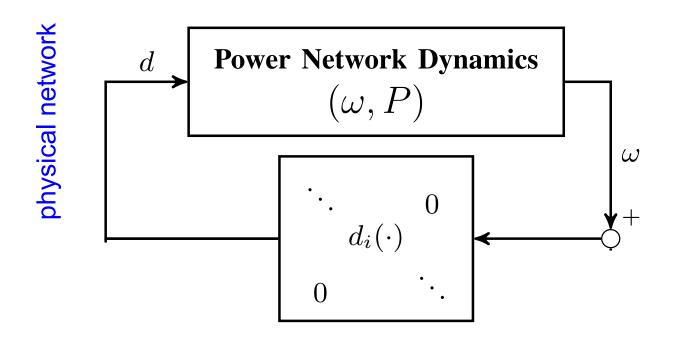


$$\min_{d,P} \quad \sum_{i} c_{i}(d_{i})$$
s. t.
$$P_{i}^{m} - d_{i} = \sum_{e} C_{ie} P_{e} \quad \text{node } i$$

$$\sum_{i \in N_{k}} \sum_{e} C_{ie} P_{e} = \hat{P}_{k} \quad \text{area } k$$

$$\underline{P}_{e} \leq P_{e} \leq \overline{P}_{e} \quad \text{line } e$$

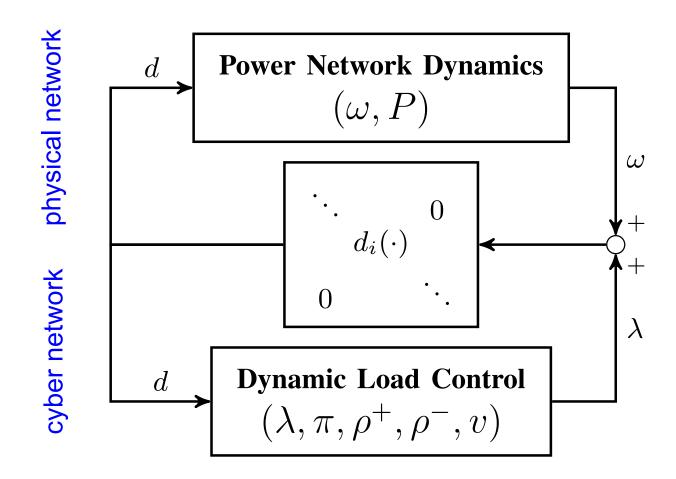
Summary: control architecture



Primary load-side frequency control

- completely decentralized
- Theorem: stable dynamic, optimal equilibrium

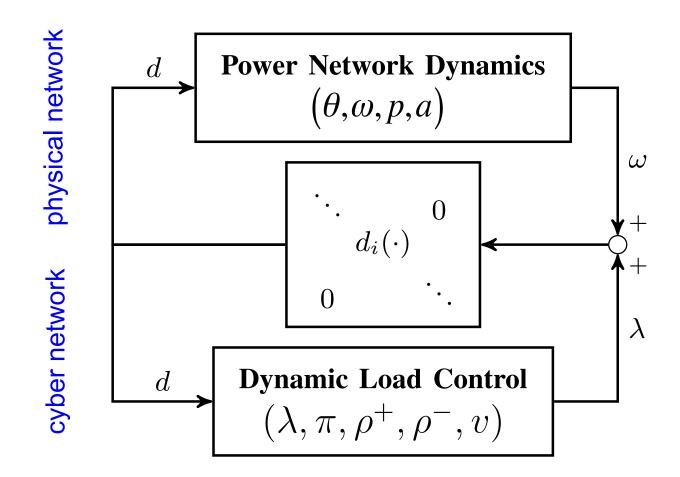
Summary: control architecture



Secondary load-side frequency control

- communication with neighbors
- Theorem: stable dynamic, optimal equilibrium

Summary: control architecture



With generator-side control, nonlinear power flow

- load-side improves both transient & eq
- Theorem: stable dynamic, optimal equilibrium

Network model

Load-side frequency control

Simulations

Details

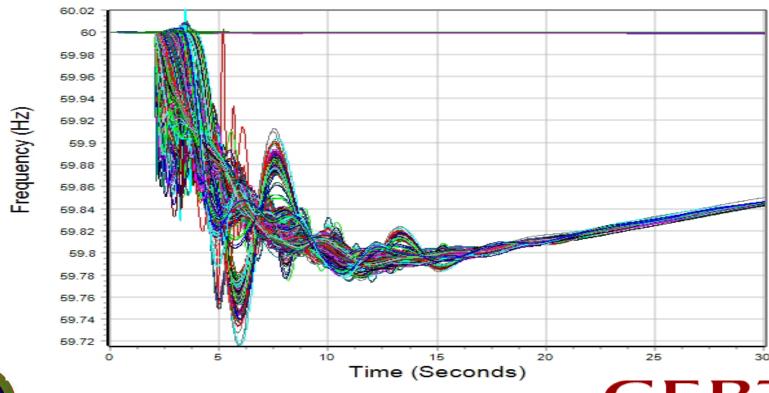
Main references (frequency control):

Zhao, Topcu, Li, L, TAC 2014 Mallada, Zhao, L, Allerton 2014

Zhao et al: CDC 2014, CISS 2015, PSCC 2016

Local frequencies

Figure shows simulated generator frequencies after a large generator outage contingency



Simulations

Dynamic simulation of IEEE 39-bus system

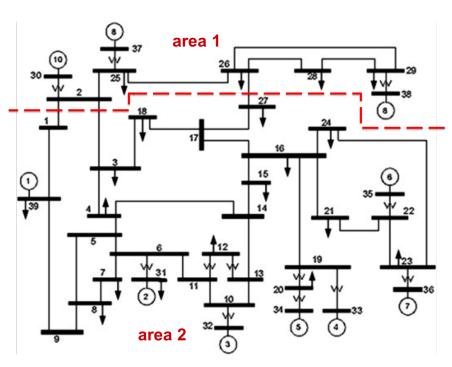
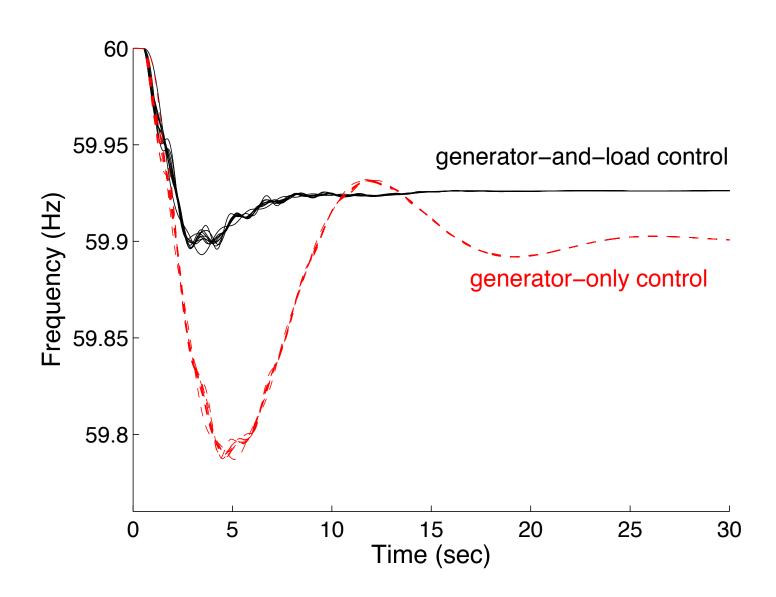


Fig. 2: IEEE 39 bus system: New England

- Power System Toolbox (RPI)
- Detailed generation model
- Exciter model, power system stabilizer model
- Nonzero resistance lines



Secondary control

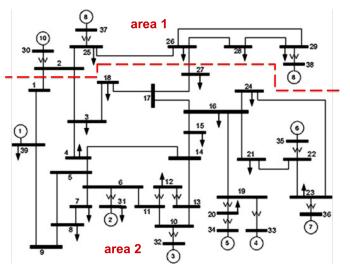
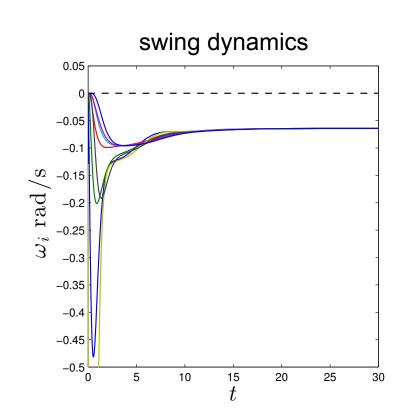
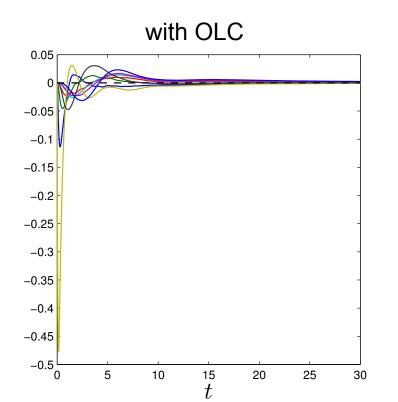


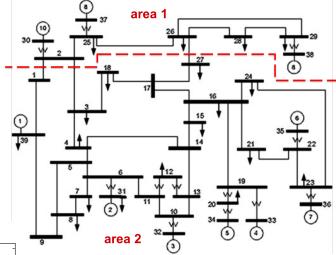
Fig. 2: IEEE 39 bus system: New England





area 1

Secondary control



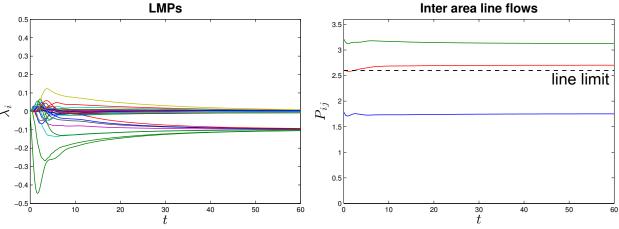
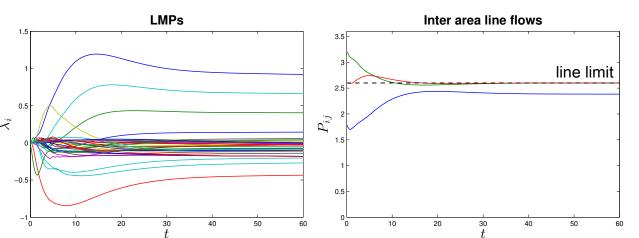


Fig. 2: IEEE 39 bus system: New England

no line limits



Total inter-area flow is the same in both cases

with line limits

Large network of DERs

Real-time optimization at scale

Online optimization

- Network solves hard problems in real time for free
- Exploit it for our optimization/control
- Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control

more details (backup)

Network model

Load-side frequency control

Simulations

Details

Main references (frequency control):

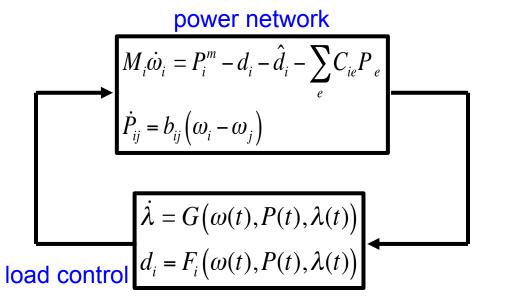
Zhao, Topcu, Li, L, TAC 2014 Mallada, Zhao, L, Allerton 2014

Zhao et al: CDC 2014, CISS 2015, PSCC 2016

Recall: design approach

Idea: exploit system dynamic as part of primal-dual algorithm for modified opt

- closed-loop system is stable
- its equilibria are optimal



$$\min_{d,P} \quad \sum_{i} c_{i}(d_{i})$$
s. t.
$$P_{i}^{m} - d_{i} = \sum_{e} C_{ie} P_{e} \quad \text{node } i$$

$$\sum_{i \in N_{k}} \sum_{e} C_{ie} P_{e} = \hat{P}_{k} \quad \text{area } k$$

$$\underline{P}_{e} \leq P_{e} \leq \overline{P}_{e} \quad \text{line } e$$

Load-side frequency control

- Primary control Zhao et al SGC2012, Zhao et al TAC2014
- Secondary control
- Interaction with generator-side control

Optimal load control (OLC)

loads

$$\min_{d,\hat{d},P} \qquad \sum_{i} \left(c_i(d_i) + \frac{\hat{d}_i^2}{2D_i} \right)$$
 s. t.
$$P_i^m - \left(d_i + \hat{d}_i \right) = \sum_{e} C_{ie} P_{ie} \qquad \forall i \qquad \text{demand = supply}$$
 disturbances
$$\min_{d,P} \qquad \sum_{i} c_i(d_i)$$

$$\begin{aligned} & \min_{d,P} & & \sum_{i} c_{i}(d_{i}) \\ & \text{s. t.} & & P_{i}^{m} - d_{i} = \sum_{e} C_{ie} P_{e} & \text{node } i \\ & & & \sum_{i \in N_{k}} \sum_{e} C_{ie} P_{e} = \hat{P}_{k} & \text{area } k \\ & & & \underline{P}_{e} \leq P_{e} \leq \overline{P}_{e} & \text{line } e \end{aligned}$$

system dynamics + load control = primal dual alg

swing dynamics

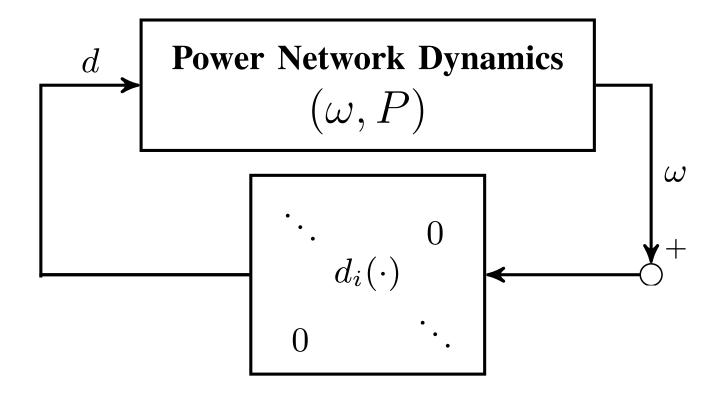
$$\dot{\omega}_i = -\frac{1}{M_i} \left(d_i(t) + D_i \omega_i(t) - P_i^m + \sum_{i \to j} P_{ij}(t) - \sum_{j \to i} P_{ji}(t) \right)$$

$$\dot{P}_{ij} = b_{ij} \left(\omega_i(t) - \omega_j(t) \right)$$
implicit

load control

$$d_i(t) := \left[c_i^{-1}(\omega_i(t))\right]_{d_i}^{\overline{d_i}} \quad \text{active control}$$

Control architecture



Load-side primary control works

Theorem

Starting from any
$$\left(d(0), \hat{d}(0), \omega(0), P(0)\right)$$
 system trajectory $\left(d(t), \hat{d}(t), \omega(t), P(t)\right)$ converges to $\left(d^*, \hat{d}^*, \omega^*, P^*\right)$ as $t \to \infty$

- $= \left(d^*, \, \hat{d}^*\right)$ is unique optimal of OLC
- lacksquare is unique optimal for dual
- completely decentralized
- frequency deviations contain right info for local decisions that are globally optimal

Recap: control goals

- Yes Rebalance power
- Yes Stabilize frequencies
- No Restore nominal frequency $(\omega^* \neq 0)$
- No Restore scheduled inter-area flow's
- No Respect line limits

Load-side frequency control

- Primary control
- Secondary control

- Mallada, Low, IFAC 2014 Mallada et al, Allerton 2014
- Interaction with generator-side control

OLC for secondary control

$$\min_{d,\hat{d},P,v} \qquad \sum_{i} \left(c_i \left(d_i \right) + \frac{1}{2D_i} \hat{d}_i^2 \right)$$
 s. t.
$$P^m - (d + \hat{d}) = CP \qquad \text{demand = supply}$$

$$P^m - d \qquad = CBC^T v \qquad \text{restore nominal freq}$$

$$\begin{aligned} & \min_{d,P} & & \sum_{i} c_{i}(d_{i}) \\ & \text{s. t.} & & P_{i}^{m} - d_{i} = \sum_{e} C_{ie} P_{e} & \text{node } i \\ & & & \sum_{i \in N_{k}} \sum_{e} C_{ie} P_{e} = \hat{P}_{k} & \text{area } k \\ & & & \underline{P}_{e} \leq P_{e} \leq \overline{P}_{e} & \text{line } e \end{aligned}$$

OLC for secondary control

$$\min_{d,\hat{d},P,v} \qquad \sum_{i} \left(c_i (d_i) + \frac{1}{2D_i} \hat{d}_i^2 \right)$$

s.t.
$$P^m - (d + \hat{d}) = CP$$

$$P^m - d = CBC^T v$$

demand = supply

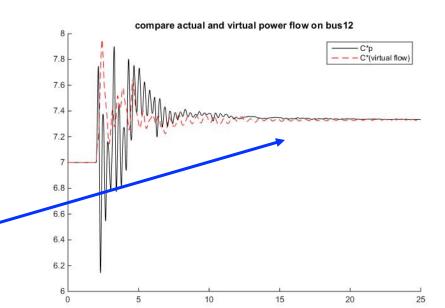
restore nominal freq

key idea: "virtual flows"

$$BC^{T}v$$

in steady state:

$$BC^T v = P$$



OLC for secondary control

$$\min_{d,\hat{d},P,v} \qquad \sum_{i} \left(c_i \left(d_i \right) + \frac{1}{2D_i} \hat{d}_i^2 \right)$$
 s. t.
$$P^m - (d + \hat{d}) = CP \qquad \text{demand = supply}$$

$$P^m - d \qquad = CBC^T v \qquad \text{restore nominal freq}$$

$$\hat{C}BC^T v = \hat{P} \qquad \text{restore inter-area flow}$$

$$\underline{P} \leq BC^T v \leq \overline{P} \qquad \text{respect line limit}$$

in steady state: virtual flow = real flows $BC^{T}v = P$

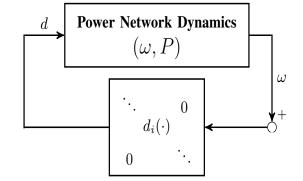
Recall: primary control

swing dynamics:

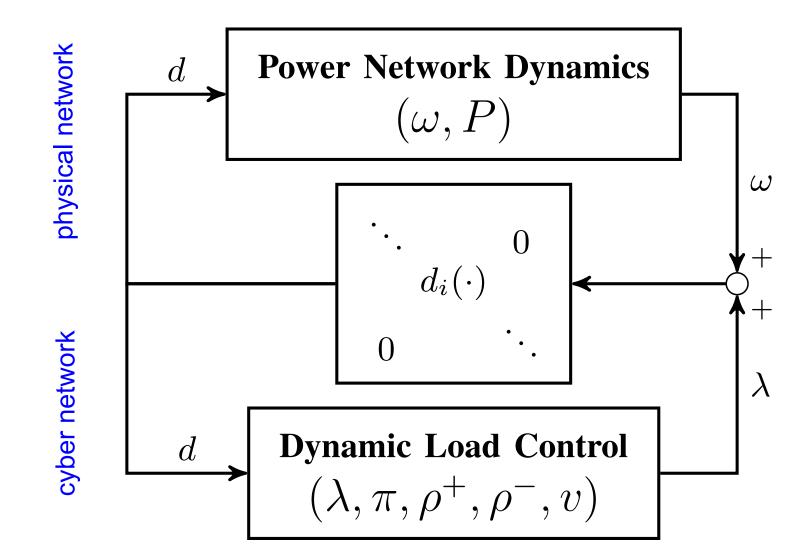
$$\dot{\omega}_{i} = -\frac{1}{M_{i}} \left(d_{i}(t) + D_{i}\omega_{i}(t) - P_{i}^{m} + \sum_{e \in E} C_{ie}P_{e}(t) \right)$$

$$\dot{P}_{ij} = b_{ij} \left(\omega_{i}(t) - \omega_{j}(t) \right)$$
implicit

load control:
$$d_i(t) := \left[c_i^{-1}(\omega_i(t))\right]_{d}^{d_i}$$
 active control



Control architecture



Secondary frequency control

load control:
$$d_i(t) := \left[c_i^{-1} \left(\omega_i(t) + \lambda_i(t)\right)\right]_{\underline{d}_i}^{d_i}$$

computation & communication:

primal var:
$$\dot{v} = \chi^v \left(L_B \lambda - C D_B \hat{C}^T \pi - C D_B (\rho^+ - \rho^-) \right)$$
 dual vars:
$$\dot{\lambda} = \zeta^\lambda \left(P^m - d - L_B v \right)$$

$$\dot{\pi} = \zeta^\pi \left(\hat{C} D_B C^T v - \hat{P} \right)$$

$$\dot{\rho}^+ = \zeta^{\rho^+} \left[D_B C^T v - \bar{P} \right]_{\rho^+}^+$$

$$\dot{\rho}^- = \zeta^{\rho^-} \left[\underline{P} - D_B C^T v \right]_{\rho^-}^+$$

Secondary control works

Theorem

starting from any initial point, system trajectory converges s. t.

- $\blacksquare \left(d^*, \hat{d}^*, P^*, v^*\right)$ is unique optimal of OLC
- lacksquare nominal frequency is restored $\omega^* = 0$
- Inter-area flows are restored $\hat{C}P^* = \hat{P}$
- line limits are respected $P \le P^* \le \overline{P}$

Recap: key ideas

Design optimal load control (OLC) problem

Objective function, constraints

Derive control law as primal-dual algorithms

- Lyapunov stability
- Achieve original control goals in equilibrium
 Distributed algorithms

primary control: $d_i(t) := c_i^{-1}(\omega_i(t))$

secondary control: $d_i(t) := c_i^{-1} \left(\omega_i(t) + \lambda_i(t) \right)$

Recap: key ideas

Design optimal load control (OLC) problem

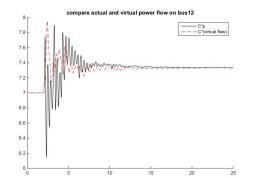
Objective function, constraints

Derive control law as primal-dual algorithms

- Lyapunov stability
- Achieve original control goals in equilibrium Distributed algorithms

Virtual flows

Enforce desired properties on line flows



in steady state: virtual flow = real flows

$$BC^T v = P$$

Recap: control goals

- Yes Rebalance power
- Yes Resynchronize/stabilize frequency

Zhao, et al TAC2014

- Yes Restore nominal frequency $(\omega^* \neq 0)$
- Yes Restore scheduled inter-areà flows
- Yes Respect line limits

Mallada, et al Allerton2014

Secondary control restores nominal frequency but requires local communication

Load-side frequency control

- Primary control
- Secondary control
- Interaction with generator-side control

Zhao and Low, CDC2014 Zhao, Mallada, Low, CISS 2015 Zhao, Mallada, Low, Bialek, PSCC 2016

Generator-side control

New model: nonlinear PF, with generator control

$$\begin{split} \dot{\theta_i} &= \omega_i \\ M_i \dot{\omega_i} &= -D_i \omega_i + \boxed{p_i} - \sum_e C_{ie} P_e \\ P_{ij} &= b_{ij} \sin \left(\theta_i - \theta_j\right) \qquad \forall i \rightarrow j \end{split}$$

Recall model: linearized PF, no generator control

$$M_{i}\dot{\omega}_{i} = -D_{i}\omega_{i} + P_{i}^{m} - d_{i} - \sum_{e} C_{ie}P_{e}$$

$$\dot{P}_{ij} = b_{ij}(\omega_{i} - \omega_{j}) \qquad \forall i \rightarrow j$$

Generator-side control

New model: nonlinear PF, with generator control

$$\dot{\theta}_{i} = \omega_{i}$$

$$M_{i}\dot{\omega}_{i} = -D_{i}\omega_{i} + p_{i} - \sum_{e} C_{ie}P_{e}$$

$$P_{ij} = b_{ij}\sin(\theta_{i} - \theta_{j}) \qquad \forall i \rightarrow j$$

generator bus: real power injection load bus: controllable load

Generator-side control

New model: nonlinear PF, with generator control

$$\dot{\theta}_{i} = \omega_{i}$$

$$M_{i}\dot{\omega}_{i} = -D_{i}\omega_{i} + p_{i} - \sum_{e} C_{ie}P_{e}$$

$$P_{ij} = b_{ij}\sin(\theta_{i} - \theta_{j}) \qquad \forall i \rightarrow j$$

generator buses:
$$\dot{p}_{i} = -\frac{1}{\tau_{bi}} (p_{i} + a_{i})$$
primary control $p_{i}^{c}(t) = p_{i}^{c}(\omega_{i}(t))$
e.g. freq droop $p_{i}^{c}(\omega_{i}) = -\beta_{i}\omega_{i}$

$$\dot{a}_{i} = -\frac{1}{\tau_{gi}} (a_{i} + p_{i}^{c})$$

Load-side control

physical network **Power Network Dynamics** d (θ, ω, p, a) 0 $d_i(\cdot)$ cyber network **Dynamic Load Control** d $(\lambda, \pi, \rho^+, \rho^-, v)$

 ω

Load-side primary control works

Theorem

Every closed-loop equilibrium solvesOLC and its dual

Suppose
$$\left| p_i^c(\omega) - p_i^c(\omega^*) \right| \le L_i \left| \omega - \omega^* \right|$$

near ω^* for some $L_i < D_i$

Any closed-loop equilibrium is (locally) asymptotically stable provided

$$\left|\theta_i^* - \theta_j^*\right| < \frac{\pi}{2}$$

Forward-engineering design facilitates

- explicit control goals
- distributed algorithms
- stability analysis

Load-side frequency regulation

- primary & secondary control works
- helps generator-side control